Line Regulation

Since the Zener diode in a shunt regulator has some small (but non-zero) dynamic resistance r_Z , we find that the load voltage V_O will have a small dependence on source voltage V_S .

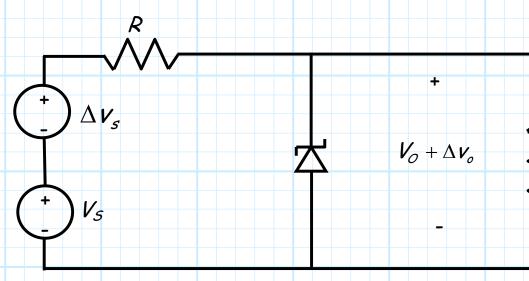
In other words, if the source voltage V_S increases (decreases), the load voltage V_O will **likewise** increase (decrease) by some very small amount.

Q: Why would the source voltage V₅ ever change?

A: There are many reasons why V_{S} will not be a perfect constant with time. Among them are:

- 1. Thermal noise
- 2. Temperature drift
- **3**. Coupled **60** Hz signals (or digital clock signals)

As a result, it is more appropriate to represent the **total** source voltage as a time-varying signal $(v_s(t))$, consisting of both a **DC** component (V_s) and a **small-signal** component $(\Delta v_s(t))$:

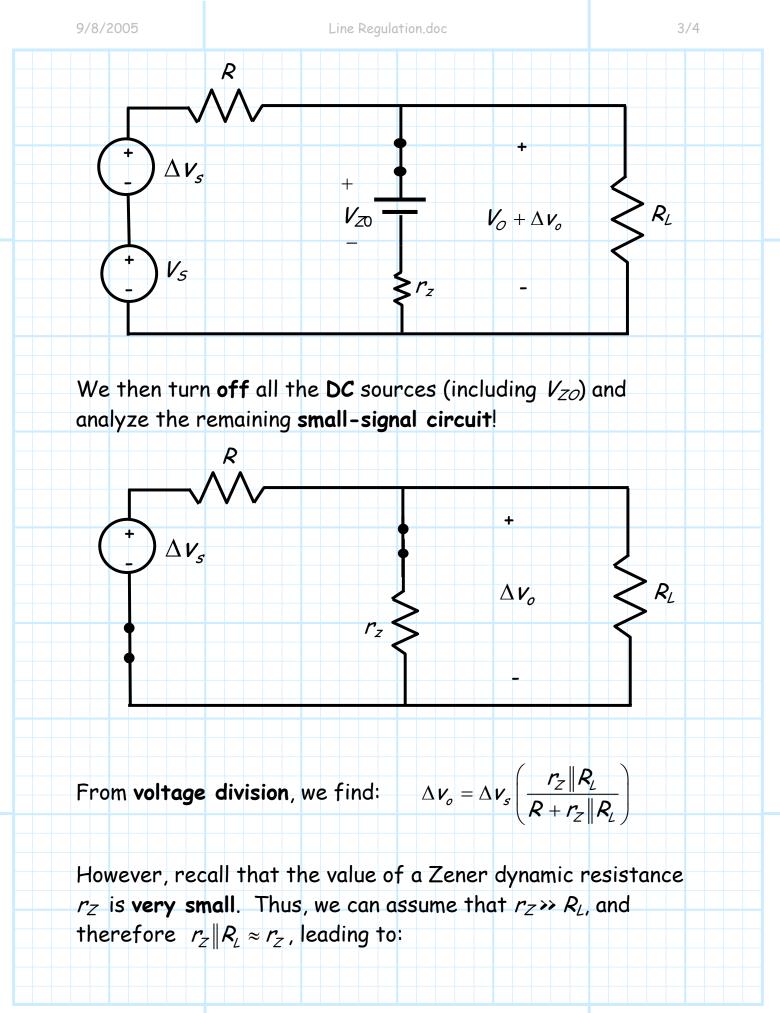

$$V_{s} = V_{s} (t) = V_{s} + \Delta V_{s} (t)$$

$$V_{s} = \int_{-\infty}^{+\infty} \int_$$

As a result of the small-signal source voltage, the total **load** voltage is likewise time-varying, with both a DC (V_0) and small-signal (Δv_0) component:

$$\mathbf{v}_{\mathcal{O}}(\mathbf{t}) = \mathbf{V}_{\mathcal{O}} + \Delta \mathbf{v}_{\mathcal{O}}(\mathbf{t})$$

So, we know that the DC source V_S produces the DC load voltage V_O , whereas the small-signal **source** voltage ΔV_s results in the small-signal **load** voltage ΔV_o .



Q: Just how are Δv_s and Δv_o **related**? I mean, if Δv_s equals, say, **500 mV**, what will value of Δv_o be?

A: Determining this answer is easy! We simply need to perform a small-signal analysis.

In other words, we first replace the Zener diode with its **Zener PWL model**.

 R_{l}

$$\Delta \boldsymbol{v}_{o} = \Delta \boldsymbol{v}_{s} \left(\frac{\boldsymbol{r}_{z} \| \boldsymbol{R}_{L}}{\boldsymbol{R} + \boldsymbol{r}_{z} \| \boldsymbol{R}_{L}} \right)$$
$$\approx \Delta \boldsymbol{v}_{s} \left(\frac{\boldsymbol{r}_{z}}{\boldsymbol{r}_{z} + \boldsymbol{R}} \right)$$

Rearranging, we find:

$$\frac{\Delta v_o}{\Delta v_s} = \frac{r_Z}{r_Z + R} \doteq \text{ line regulation}$$

This equation describes an important performance parameter for shunt regulators. We call this parameter the **line regulation**.

* Line regulation allows us to determine the **amount** that the load voltage changes (Δv_o) when the source voltage changes (Δv_s) .

* For example, if line regulation is 0.002, we find that the load voltage will increase 1 mV when the source voltage increases 500mV

(i.e., $\Delta v_o = 0.002 \Delta v_s = 0.002(0.5) = 0.001 \text{ V}$).

* Ideally, line regulation is zero. Since dynamic resistance r_Z is typically very small (i.e., $r_Z \ll R$), we find that the line regulation of most shunt regulators is likewise small (this is a good thing!).